If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+600t=0
a = 16; b = 600; c = 0;
Δ = b2-4ac
Δ = 6002-4·16·0
Δ = 360000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{360000}=600$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(600)-600}{2*16}=\frac{-1200}{32} =-37+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(600)+600}{2*16}=\frac{0}{32} =0 $
| 18x+12=25-x | | 4(x)+(x)+2=122 | | 27/9x4/4=3 | | 6x=54.6 | | 4(x)+10+3(x)-5=180 | | 6-3(2x+1)=12 | | 6x-5=6x+5x | | 12x+5=43 | | 3d2–8d–11=0 | | 16t+4=2 | | 2x+58=360 | | 3+3x=5x+11 | | 5x-5=(x-3 | | y/2+7=7 | | 11/22=3/4h | | 3+7y=45 | | 3(2x+5)=2(15−2x) | | 8y-3+4.5y=-27.5 | | 2x+3x=35, | | 29/18+1/2x=-5/3(x+1/3 | | 7+2p=10 | | 6(2+x)=5+15 | | 3/2a-4/3a=-10/3+22/3@ | | 8-x=5+x | | 20+17v=-6=15v | | 9=p+ | | 0,45x1,4-0,2x=3,9-x | | 360=4x+60 | | 11w-3w=48 | | 8x−10=3x+90=180 | | 4/5n=-16/55 | | -8(5s+3)=-29 |